If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2/(4-5x+x^2)=16
We move all terms to the left:
x^2/(4-5x+x^2)-(16)=0
Domain of the equation: (4-5x+x^2)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
x^2-5x!=-4
x∈R
x^2-16*(4-5x+x^2)=0
We multiply parentheses
x^2-16x^2+80x-64=0
We add all the numbers together, and all the variables
-15x^2+80x-64=0
a = -15; b = 80; c = -64;
Δ = b2-4ac
Δ = 802-4·(-15)·(-64)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{10}}{2*-15}=\frac{-80-16\sqrt{10}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{10}}{2*-15}=\frac{-80+16\sqrt{10}}{-30} $
| x^2/4-5x+x^2=16 | | x^2=64-80x+16x^2 | | -0.5=n=18 | | 3(2x−5)=4x+3= | | 10x-x^2-16=8 | | 9x-163x+11+7x-5=90 | | -30-6a=54 | | x-7-6x-10=3 | | 103.5=4.1x+(x/4) | | F(x)=0.75(2/3)^x | | x=64/11 | | 12+5x=5x+8 | | x+12/2=20 | | 2(5+n)=4n | | 2x/3-x/6=1/2 | | 6+x/4+x+1/2=3/8 | | 180°=41x+16 | | 7x-3=15x+3 | | 5x^2-7x=x(x-1) | | 4x-x-1=2x+2 | | 76–2x=14 | | 3.2d-5=51.8d | | (7x+3)÷3=2x-1 | | -2(x+3)+x=14+x | | 0.33^x=0.01 | | 2x/3+1=7x/15+2 | | 2/9^6*9/2^-8=2/9^2m | | 4(x−2)+16=2(2x+4) | | 5x+94(3x+6)=180 | | 8x+3=-(3-3x)+21 | | 3b=7b-b | | 4x,2x-7x=4 |